题目内容
20.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=$\frac{1}{2}$,则下列结论正确的是( )A. | xf(x)在(0,+∞)单调递增 | B. | xf(x)在(1,+∞)单调递减 | ||
C. | xf(x)在(0,+∞)上有极大值$\frac{1}{2}$ | D. | xf(x)在(0,+∞)上有极小值$\frac{1}{2}$ |
分析 根据条件,构造函数g(x)=xf(x),利用导数研究函数的单调性和极值,即可得到结论.
解答 解:由x2f′(x)+xf(x)=lnx得x>0,
则xf′(x)+f(x)=$\frac{lnx}{x}$,
即[xf(x)]′=$\frac{lnx}{x}$,
设g(x)=xf(x),
即g′(x)=$\frac{lnx}{x}$>0得x>1,由g′(x)<0得0<x<1,
即当x=1时,函数g(x)=xf(x)取得极小值g(1)=f(1)=$\frac{1}{2}$,
故选:D
点评 本题主要考查函数的导数的应用,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键.
练习册系列答案
相关题目
10.已知全集为R,集合A={x|y=1og2(x-1)},B={x|x2-3x+2≤0},则A∩CRB=( )
A. | {x|x>2} | B. | {x|1≤x≤2} | C. | {x|x≥2} | D. | {x|x<1或x>2} |
11.函数$f(x)={2^{{x^2}+1}}$,$x∈[{-1,\;\sqrt{2}}]$的值域为( )
A. | [2,8] | B. | [4,8] | C. | [1,3] | D. | [2,3] |
8.不等式组$\left\{\begin{array}{l}-2≤x≤2\\ 0≤y≤4\end{array}\right.$表示的点集记为M,不等式组$\left\{\begin{array}{l}x-y+2≥0\\ y={x^2}\end{array}\right.$表示的点集记为N,在M中任取一点P,则P∈N的概率为( )
A. | $\frac{7}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{7}{32}$ | D. | $\frac{9}{32}$ |
5.已知正实数m,n满足m+n=1,且使$\frac{1}{m}+\frac{16}{n}$取得最小值.若曲线y=xa过点P($\frac{m}{5}$,$\frac{n}{4}$),则a的值为( )
A. | -1 | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
12.某几何体的三视图如图所示,则该几何体的体积为( )
A. | $\frac{10}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{20}{3}$ | D. | 4 |
9.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位奇数,这样的三位数共有( )
A. | 24个 | B. | 30个 | C. | 36个 | D. | 48个 |
10.设实数a,b满足lg(a-1)+lg(b-2)=lg2,则a+b的取值范围是( )
A. | (3,+∞) | B. | [3+2$\sqrt{2}$,+∞) | C. | (2,+∞) | D. | (2$\sqrt{2}$,+∞) |