题目内容
【题目】已知双曲线:的离心率,其左焦点到此双曲线渐近线的距离为.
(1)求双曲线的方程;
(2)若过点的直线交双曲线于两点,且以为直径的圆过原点,求圆的圆心到抛物线的准线的距离.
【答案】(1)(2)或
【解析】
(1)由题意可得,解出即可;
(2)由题意设直线的方程为,联立直线与椭圆的方程并消元,设,,可得韦达定理的结论,又以为直径的圆过原点得,代入可求得,根据中点坐标公式求得圆的圆心的纵坐标,从而可求出答案.
解:(1)由题意可得,
解得,
∴双曲线的方程为;
(2)易知直线与轴不重合,设直线的方程为,
联立方程,可得,
上述方程式的判别式,以及(否则直线不能与双曲线交两点),
设,,则,,
同时可得,
以为直径的圆过原点,知,
结合,可知,,
∴圆的圆心即中点的纵坐标为,
∵抛物线的准线方程为,
∴圆的圆心到抛物线的准线距离为或.
【题目】今年,新型冠状病毒来势凶猛,老百姓一时间“谈毒色变”,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出“医”字的繁体字“醫”进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:
每周喝酒量(两) | |||||
人数 | 100 | 300 | 450 | 100 |
规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;
②每周喝酒量达到8两的叫有酒瘾的人.
(1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;
(2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.
常喝酒 | 不常喝酒 | 合计 | |
得病 | |||
不得病 | 250 | 650 | |
合计 |
参考公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |