题目内容
7.化简:(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-2$\frac{\root{3}{b}}{\root{3}{a}}$)×$\root{3}{a}$;
(2)$\frac{x-y}{{x}^{\frac{1}{3}}-{y}^{\frac{1}{3}}}$-$\frac{x+y}{{x}^{\frac{1}{3}}+{y}^{\frac{1}{3}}}$.
分析 (1)化简得$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-2$\frac{\root{3}{b}}{\root{3}{a}}$)×$\root{3}{a}$=$\frac{{a}^{\frac{1}{3}}({a}^{\frac{1}{3}}-{b}^{\frac{1}{3}})(4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}})}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$,从而可得.
=${a}^{\frac{1}{3}}$×${a}^{\frac{1}{3}}$×${a}^{\frac{1}{3}}$=a;
(2)化简得$\frac{x-y}{{x}^{\frac{1}{3}}-{y}^{\frac{1}{3}}}$-$\frac{x+y}{{x}^{\frac{1}{3}}+{y}^{\frac{1}{3}}}$=(${x}^{\frac{2}{3}}$+${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$+${y}^{\frac{2}{3}}$)-(${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$+${y}^{\frac{2}{3}}$),从而可得.
解答 解:(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-2$\frac{\root{3}{b}}{\root{3}{a}}$)×$\root{3}{a}$
=$\frac{{a}^{\frac{1}{3}}({a}^{\frac{1}{3}}-{b}^{\frac{1}{3}})(4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}})}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$
=${a}^{\frac{1}{3}}$×${a}^{\frac{1}{3}}$×${a}^{\frac{1}{3}}$=a;
(2)$\frac{x-y}{{x}^{\frac{1}{3}}-{y}^{\frac{1}{3}}}$-$\frac{x+y}{{x}^{\frac{1}{3}}+{y}^{\frac{1}{3}}}$=(${x}^{\frac{2}{3}}$+${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$+${y}^{\frac{2}{3}}$)-(${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$+${y}^{\frac{2}{3}}$)
=2${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$.
点评 本题考查了立方差与立方和公式的应用及有理数指数幂的化简运算.
A. | [0,+∞) | B. | (0,+∞) | C. | [1,+∞) | D. | [$\frac{\sqrt{3}}{2}$,+∞) |