题目内容

2.若函数f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$,则f(x)的单调增区间是(-∞,0],[1,+∞).

分析 画出分段函数f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$的图象,数形结合可得f(x)的单调增区间.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}\right.$的图象如下图所示:

由图可得:f(x)的单调增区间是:(-∞,0],[1,+∞),
故答案为:(-∞,0],[1,+∞)

点评 本题考查的知识点是分段函数的应用,熟练掌握并正确理解分段函数的单调性,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网