题目内容
【题目】箱中有标号为1,2,3,4,5,6,7,8且大小相同的8个球,从箱中一次摸出3个球,记下号码并放回,如果三球号码之积能被10整除,则获奖.若有2人参加摸奖,则恰好有2人获奖的概率是( )
A.B.C.D.
【答案】A
【解析】
首先求出摸一次中奖的概率,摸一次中奖是一个等可能事件的概率,做出所有的结果数和列举出符合条件的结果数,得到概率,2个人摸奖.相当于发生2次重复试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.
解:由题意知,首先求出摸一次中奖的概率,
从8个球中摸出3个,共有种结果,
3个球号码之积能被10整除,则其中一个必有5,
另外两个号码从1,2,3,4,6,7,8中抽取,且2个号码的乘积必须为偶数,
即:抽取的另外两个号码为:一个奇数和一个偶数或者两个都为偶数,
则,即共有18种结果,使得3个球号码之积能被10整除,
摸一次中奖的概率是,
2个人摸奖,相当于发生2次试验,且每一次发生的概率是,
有2人参与摸奖,恰好有2人获奖的概率是.
故选:A.
练习册系列答案
相关题目
【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:
响应 | 犹豫 | 不响应 | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.
犹豫 | 不犹豫 | 总计 | |
男性青年 | |||
女性青年 | |||
总计 | 1800 |
参考公式:
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |