18.要加快H2O2分解的速度,下列措施不可行的是( )
A. | 加热或光照 | B. | 加MnO2或FeCl3 | C. | 加压 | D. | 增大H2O2的浓度 |
16.高效净水剂聚合氯化铝铁(PAFC)的组成可表示为[AlFe(OH)nCl6-n]m,该物质广泛应用于日常生活用水和工业废水的净化处理.某工厂欲以工业废料(金属铁、铝及其氧化物)为原料、采用如下流程来制取PAFC:
下列判断无法确定的是( )
下列判断无法确定的是( )
A. | PAFC因水解而能净水 | |
B. | 往甲溶液中滴入KSCN溶液后呈血红色 | |
C. | 试剂X具有氧化性 | |
D. | 乙溶液呈酸性 |
15.用含有A12O3、SiO2和少量FeO•xFe2O3的铝灰来制备A12(SO4)3.18H2O.,工艺流程如下(部分操作和条件略):
Ⅰ、向铝灰中加入过量稀H2SO4,过滤:
Ⅱ、向滤液中加入过量KMnO4溶液,调节溶液的pH约为3;
Ⅲ、加热,产生大量棕色沉淀,静置,上层溶液呈紫红色:
Ⅳ、加入MnSO4至紫红色消失,过滤;
Ⅴ、浓缩、结晶、分离,得到产品.
(1)铝在元素周期表中的位置第三周期ⅢA族;H2SO4溶解Al2O3的离子方程式是:Al2O3+6H+=2Al3++3H2O.
(2)写出Ⅱ中加入过量KMnO4溶液发生的离子方程式:5Fe2++8H++MnO4-=Mn2++5Fe3++4H2O.
(3)已知:生成氢氧化物沉淀的pH
注:金属离子的起始浓度为0.1mol•L-1
根据表中数据解释步骤Ⅱ的目的:将Fe2+氧化为Fe3+,调节pH值使铁元素完全沉淀.
(4)己知:一定条件下,MnO4-可与Mn2+反应生成MnO2.
①向Ⅲ的沉淀中加入浓HCI并加热,能说明沉淀中存在MnO2的现象是生成黄绿色气体.
②Ⅳ中加入MnSO4的目的是除去过量的MnO4-.
(5)在该实验条件下Ksp[Fe(OH)3]=4.0×10-38,当溶液的pH=3时,溶液中c(Fe3+)=4.0×10-5 mol/L.
Ⅰ、向铝灰中加入过量稀H2SO4,过滤:
Ⅱ、向滤液中加入过量KMnO4溶液,调节溶液的pH约为3;
Ⅲ、加热,产生大量棕色沉淀,静置,上层溶液呈紫红色:
Ⅳ、加入MnSO4至紫红色消失,过滤;
Ⅴ、浓缩、结晶、分离,得到产品.
(1)铝在元素周期表中的位置第三周期ⅢA族;H2SO4溶解Al2O3的离子方程式是:Al2O3+6H+=2Al3++3H2O.
(2)写出Ⅱ中加入过量KMnO4溶液发生的离子方程式:5Fe2++8H++MnO4-=Mn2++5Fe3++4H2O.
(3)已知:生成氢氧化物沉淀的pH
Al(OH)3 | Fe(OH)2 | Fe(OH)3 | |
开始沉淀时 | 3.4 | 6.3 | 1.5 |
完全沉淀时 | 4.7 | 8.3 | 2.8 |
根据表中数据解释步骤Ⅱ的目的:将Fe2+氧化为Fe3+,调节pH值使铁元素完全沉淀.
(4)己知:一定条件下,MnO4-可与Mn2+反应生成MnO2.
①向Ⅲ的沉淀中加入浓HCI并加热,能说明沉淀中存在MnO2的现象是生成黄绿色气体.
②Ⅳ中加入MnSO4的目的是除去过量的MnO4-.
(5)在该实验条件下Ksp[Fe(OH)3]=4.0×10-38,当溶液的pH=3时,溶液中c(Fe3+)=4.0×10-5 mol/L.
14.下列对于反应3NO2+H2O=2HNO3+NO的说法中正确的是( )
A. | 氧化剂与还原剂的质量比为1:2 | |
B. | NO2是氧化剂水是还原剂 | |
C. | 生成1molNO则有6mol电子发生转移 | |
D. | 氧化剂与还原剂的物质的量比为2:1 |
13.下列离子方程式,正确的是( )
A. | 过氧化钠与水反应:2O22-+2H2O═4OH-+O2↑ | |
B. | 澄清石灰水中通入过量二氧化碳:OH-+CO2═HCO3- | |
C. | 往FeCl3溶液中加入Cu粉:2Fe3++3Cu=2Fe+3Cu2+ | |
D. | CaCO3溶于稀盐酸中:CO32-+2H+═CO2↑+H2O |
12.铜、铬都是用途广泛的金属.工业上利用电镀污泥(主要含有Fe2O3、CuO、Cr2O3及部分难溶杂质)回收金属铜和铬的流程如图1,CaSO4的溶解度曲线如图2.
已知:部分物质沉淀的pH如表:
请回答下列问题:
(1)滤液I中所含溶质主要有Fe2(SO4)3、Cr2(SO4)3、CuSO4(填化学式).
(2)第②步操作中,先加人Ca(OH)2调节溶液的pH,调节范围为3.2<pH≤4.3,然后将浊液加热至80℃趁热过滤,所得滤渣Ⅱ的成分为Fe(OH)3、CaSO4.
(3)第③步操作中,发现除了生成砖红色沉淀外,还产生了无色刺激性气味的气体.写出该步骤中发生反应的离子方程式2H2O+HSO3-+2Cu2+=Cu2O↓+SO42-+5H+、HSO3-+H+=SO2↑+H2O.
(4)当离子浓度≤1×10-5mol•L-1时,可以认为离子沉淀完全.第④步操作中,若要使Cr3+完全沉淀,则室温下溶液中a的最小值经计算为5.6.则得出该值时还必须提供的数据是:溶度积常数.
(5)Cr(OH)3受热分解为Cr2O3,用铝热法可以冶炼金属铬.写出铝热法炼铬的化学方程式:Cr2O3+2Al$\frac{\underline{\;高温\;}}{\;}$Al2O3+2Cr.
已知:部分物质沉淀的pH如表:
Fe3+ | Cu2+ | Cr3+ | |
开始沉淀pH | 2.1 | 4.7 | 4.3 |
完全沉淀pH | 3.2 | 6.7 | a |
(1)滤液I中所含溶质主要有Fe2(SO4)3、Cr2(SO4)3、CuSO4(填化学式).
(2)第②步操作中,先加人Ca(OH)2调节溶液的pH,调节范围为3.2<pH≤4.3,然后将浊液加热至80℃趁热过滤,所得滤渣Ⅱ的成分为Fe(OH)3、CaSO4.
(3)第③步操作中,发现除了生成砖红色沉淀外,还产生了无色刺激性气味的气体.写出该步骤中发生反应的离子方程式2H2O+HSO3-+2Cu2+=Cu2O↓+SO42-+5H+、HSO3-+H+=SO2↑+H2O.
(4)当离子浓度≤1×10-5mol•L-1时,可以认为离子沉淀完全.第④步操作中,若要使Cr3+完全沉淀,则室温下溶液中a的最小值经计算为5.6.则得出该值时还必须提供的数据是:溶度积常数.
(5)Cr(OH)3受热分解为Cr2O3,用铝热法可以冶炼金属铬.写出铝热法炼铬的化学方程式:Cr2O3+2Al$\frac{\underline{\;高温\;}}{\;}$Al2O3+2Cr.
11.C-NaMO2电池是科学家正在研发的钠离子电池,据悉该电池可以将传统锂电池的续航能力提升7倍.该电池的电池反应式为:NaMO2+nC?Na(1-x)MO2+NaxCn,下列有关该电池的说法正确的是( )
0 168268 168276 168282 168286 168292 168294 168298 168304 168306 168312 168318 168322 168324 168328 168334 168336 168342 168346 168348 168352 168354 168358 168360 168362 168363 168364 168366 168367 168368 168370 168372 168376 168378 168382 168384 168388 168394 168396 168402 168406 168408 168412 168418 168424 168426 168432 168436 168438 168444 168448 168454 168462 203614
A. | 电池放电时,溶液中钠离子向负极移动 | |
B. | 该电池负极的电极反应为:NaMO2-xe-═Na(1-x)MO2+xNa+ | |
C. | 消耗相同质量金属时,用锂作负极产生电子的物质的量比用钠时少 | |
D. | 电池充电时的阳极反应式为:nC+x Na+-xe-═NaxCn |