题目内容

5.(1)肼(N2H4)又称联氨,在常温下是一种可燃性的液体,可用作火箭燃料.已知在101kPa时,N2H4在氧气中完全燃烧生成氮气和H2O,写出该反应的化学方程式N2H4+O2=N2+2H2O.
(2)肼-空气燃料电池是一种碱性燃料电池,电解质溶液是20%~30%的KOH溶空气燃料电池放电时:
正极的电极反应式:O2+2H2O+4e-=4OH-
负极的电极反应式:N2H4+4OH--4e-=4H2O+N2↑.
(3)假设使用肼-空气燃料电池作为电源,有4mol电子在电路中经过,则肼-空气燃料电池理论上消耗标准状况下的空气112L(假设空气中氧气体积分数为20%).

分析 (1)根据N2H4在氧气中完全燃烧生成氮气和H2O,写出其相应的化学方程式;
(2)燃料电池中,负极上投放的是燃料,负极上燃料失电子发生氧化反应,正极为氧气得电子发生还原反应;
(3)根据转移电子计算消耗的氧气,根据氧气计算需要空气的体积.

解答 解:(1))因为N2H4在氧气中完全燃烧生成氮气和H2O,所以其化学反应方程式为:N2H4+O2=N2+2H2O,
故答案为:N2H4+O2=N2+2H2O;
(2)燃料电池中,负极上投放的是燃料,负极上燃料失电子发生氧化反应,在碱性环境下的反应式为:N2H4+4OH--4e-=4H2O+N2↑,正极为氧气得电子发生还原反应,在碱性环境下的反应式为:O2+2H2O+4e-=4OH-
故答案为:O2+2H2O+4e-=4OH-;N2H4+4OH--4e-=4H2O+N2↑;
(3)若有4mol电子在电路中经过,则根据正极反应O2+2H2O+4e-=4OH-,有1mol氧气消耗,则需要空气的体积=$\frac{1mol}{20%}$×22.4L/mol=112L,故答案为:112.

点评 本题考查了方程式的书写、燃料电池原理,明确燃料电池的正负极的反应即可解答,难度中等.

练习册系列答案
相关题目
3.甲烷化技术是煤制天然气最核心、最关键的技术.CO加氢合成甲烷属于多相催化平衡反应,催化剂一般为镶催化剂(工作温度400K-800K),主反应式:
CO(g)+3H2(g)=CH4(g)+H2O(g)△H=-206kJ/mol  (1)
CO2(g)+4H2(g)=CH4(g)+2H2O(g)△H=-165kJ/mol  (2)
(1)煤经过气化、变换、净化得到的合成气中一般含有H2、CO、CO2、H2O和惰性气体.
①请写出H2O(g)与CO反应的热化学反应方程式CO(g)+H2O(g)=CO2(g)+H2(g)△H=-41kJ/mol.(该反应编号为“(3)”).
②若主反应(1)(2)的平衡常数450K时分别为K1、K2,则与“H2O与CO反应的平衡常数K3(同温度)”的数量关系为$\frac{K{\;}_{1}}{K{\;}_{2}}$.
(2)在体积不变的容器中,进行甲烷化反应,若温度升高,CO和H2的转化率都降低(填“降低”、“升高”或“不变”),但数据显示CO转化率变化更为显著,主要原因是 CO(g)+H2O(g)=CO2(g)+H2(g)△H=-41kJ/mol温度升高,平衡向逆方向移动,进一步消耗了氢气而生成了CO,使CO转化率更低.
(3)当温度在800K以上时,平衡体系中还会有下列2个副反应:
2CO(g)=C(g)+CO2(g)△H=-171kJ/mol (快反应) (4)
C(s)+2H2(g)=CH4(g)△H=-73kJ/mol(慢反应)  (5)
甲烷化反应容器就会出现碳固体结块现象,热量传递不好而使催化剂烧结,失去催化作用.
(4)甲烷化反应容器主副反应(1)至(5),其平衡常数K的对数lnK与温度关系如图:写出图中曲线A、B所对应的反应方程式编号(1)(3).
10.实验室用溴化钠、浓硫酸和醇制备溴乙烷(CH3CH2Br)和1-溴丁烷(CH3CH2CH2CH2Br)的反应原理如下:
NaBr+H2SO4→HBr+NaHSO4
CH3CH2OH+HBr?CH3CH2Br+H2O
CH3CH2CH2CH2OH+HBr?CH3CH2CH2CH2Br+H2O
可能存在的副反应有:醇在浓硫酸的存在下脱水生成烯和醚,Br-被浓硫酸氧化为Br2等.有关数据列表如下:
  乙醇 溴乙烷 正丁醇 1-溴丁烷
 密度/g•cm-3 0.7893 1.4604 0.8098 1.2758
 沸点/℃ 78.5 38.4 117.2 101.6
请回答下列问题:
(1)溴乙烷和1-溴丁烷的制备实验中,下列仪器最不可能用到的是d.(填字母)
a.圆底烧瓶    b.量筒   c.温度计   d.普通漏斗
(2)制备实验中常采用80%的硫酸而不用98%的浓硫酸,其主要原因是减少副产物烯和醚的生成,防止溴离子被浓硫酸氧化为溴单质.
(3)在制备溴乙烷时,采用边反应边蒸出产物的方法,这样有利于平衡向生成溴乙烷的方向移动,但在制备1-溴丁烷时却不能边反应边蒸出产物,其原因是1-溴丁烷和正丁醇的沸点相差不大,正丁醇会随1-溴丁烷同时蒸出
(4)将制得的1-溴丁烷粗产品置于分液漏斗中,依次加入NaHSO3溶液和水,振荡、静置后,1-溴丁烷在下层(“上层”“下层”或“不分层”)加入NaHSO3溶液的目的是除去产物中杂质溴
(5)将实验(4)所得1-溴丁烷粗产品干燥后,进行蒸馏操作,即可得到纯净的1-溴丁烷.
(6)某实验小组在制取1-溴丁烷的实验中所取1-丁醇(CH3CH2CH2CH2OH)7.4g、NaBr13.0g,最终制得1-溴丁烷9.6g,则1-溴丁烷的产率是70%(保留2位有效数字)
7.海洋是一座巨大的化学资源宝库,海水中蕴含80多种元素.若把海水淡化和化工生产结合起来,既能解决淡水资源缺乏的问题,又能从海水中提取多种化工原料.某工厂对海水资源的综合利用工艺流程图如下:

(1)工业上粗盐的精制是为了除去粗盐中的Ca2+、Mg2+、SO42-及泥沙,可将粗盐溶于水.然后进行下列五项操作:①过滤;②加过量的NaOH溶液;③加适量的盐酸;④加过量的Na2CO3溶液;⑤加过量的BaCL2溶液.
正确的操作顺序是C.
    A.①④②⑤③B.④⑤②①③C.②⑤④①③D.⑤④①②③
(2)氯碱工业生产的Cl2通入石灰乳中制取漂白粉的化学方程式是2Ca(OH)2+2Cl2=Ca(ClO)2+CaCl2+2H2O,漂白粉久置空气中会变质,写出漂白粉与空气中水和二氧化碳反应的化学方程式Ca(ClO)2+CO2+H2O=CaCO3+2HClO.
(3)步骤Ⅰ中已获得Br2,步骤Ⅱ中又将Br2还原为Br-,其目的是富集溴元素.步骤Ⅱ用SO2水溶液吸收Br2,吸收率可达99%,由此反应可知,除环境保护外,在工业生产中还应解决的问题是强酸对设备的腐蚀.
(4)采用“空气吹出法”从浓海水吹出Br2,并用纯碱吸收,纯碱溶液吸收溴的主要反应是Br2+Na2CO3+H2O→NaBr+NaBrO3+NaHCO3(未配平),当吸收10molBr2时,转移电子的物质的量为$\frac{50}{3}$mol.
(5)在制取无水氯化镁时需要在干燥的HCl气流中加热MgCl2•6H2O的原因在干燥的HCl气流中,抑制了MgCl2水解,且带走MgCl2•6H2O受热产生的水汽,故能得到无水MgCl2,采用石墨做阳极,不锈钢做阴极电解熔融的氯化镁时,阳极的电极反应式2Cl--2e-=Cl2↑.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网