【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
【题目】某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克 | 2 | 4 | 10 | |
市场需求量百千克 | 12 | 10 | 4 |
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
【题目】某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量y(台)与销售单价x(元)的关系可以近似地看做一次函数,如下表所示:
x | 22 | 24 | 26 | 28 |
y | 90 | 80 | 70 | 60 |
(1)请直接写出y与x之间的函数关系式;
(2)为了实现平均每月375元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?
(3)设超市每月台灯销售利润为ω(元),求ω与x之间的函数关系式,当x取何值时,ω的值最大?最大值是多少?
【题目】某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10万千克.基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为(万元),该种蔬菜的年销量将是原年销量的倍,与的关系如下表:
(万元) | 0 | 1 | 2 | 3 | 4 | 5 | … |
1 | 1.5 | 1.8 | 1.9 | 1.8 | 1.5 | … |
(1)猜想与之间的函数类型是________函数,求出该函数的表达式并验证;
(2)求年利润(万元)与绿色开发投入的资金(万元)之间的函数关系式,当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润(万元)的最大值;
(注:年利润销售总额-成本费-绿色开发投入的资金)
(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量(万千克)与每年提高种植人员的奖金(万元)之间满足,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?()