题目内容
【题目】县政府计划建设一项水利工程,工程需要运送的土石方总量为(单位:),某运输公司承担了运送土石方的任务.
(1)运输公司平均运输速度v(单位:天)与完成运输所需时间t(单位:天)之间具有怎样的函数关系?
(2)这个运输公司共有80辆卡车,每天可运输土石方为(单位:),公司完成全部运输任务需要多长时间?
(3)当公司以问题(2)中的速度工作了30天后,由于工程进度的需要,剩下的运输任务必须在20天内完成,则运输公司至少要增加多少辆卡车?
【答案】(1);(2)公司完成全部运输任务需要60天;(3)运输公司至少要增加40辆卡车.
【解析】
(1)由总量=vt,求出v即可;
(2)把v的值代入计算即可求出t的值;
(3)设需要增加a辆卡车,每辆卡车每天运输土石方为m3,求出前30天与后20天的土石方确定出解析式,即可求出a的最小值.
(1)根据题意得:,
;
(2)当时,
,
答:公司完成全部运输任务需要60天;
(3)设需要增加a辆卡车,每辆卡车每天运输土石方为,
前30天运输土石方为:,
后20天运输土石方为:.
设30天后的每天平均运输速度为,所需时间为,
,
由反比例函数的性质可知,随着的增大而减小,
当时,,
,
,的最小值是40.
答:运输公司至少要增加40辆卡车.
【题目】例 如图①,李老师设计了一个探究杠杆平衡条件的实验:在一个自制的类似天平的仪器的左边固定托盘中放置一个重物,在右边活动托盘(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘与点的距离,观察活动托盘中砝码的质量的变化情况.实验数据记录如表:
10 | 15 | 20 | 25 | 30 | |
30 | 20 | 15 | 12 | 10 |
(1)把表中的各组对应值作为点的坐标,在图②的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测与之间的函数关系,求出函数关系式;
(3)当砝码的质量为时,活动托盘与点的距离是多少?
【题目】某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克 | 2 | 4 | 10 | |
市场需求量百千克 | 12 | 10 | 4 |
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
【题目】新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:
家居用品名称 | 单价(元) | 数量(个) | 金额(元) |
挂钟 | 30 | 2 | 60 |
垃圾桶 | 15 | ||
塑料鞋架 | 40 | ||
艺术字画 | 2 | 90 | |
电热水壶 | 35 | 1 | |
合计 | 8 | 280 |
(1)直接写出________,________;
(2)甲居民购买了垃圾桶,塑料鞋架各几个?
(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,若买的垃圾桶的数量比买字画的数量多2个,则甲居民买字画多少个?
【题目】某体育用品商店为了解3月份的销售情况,对本月各类商品的销售情况进行调查,并将调查的结果绘制成如下的两幅不完整的统计图.
(1)请根据图中提供的信息,将条形图补充完整;
(2)该商店准备按3月份球类商品销售量购进球类商品,含篮球、足球、排球三种,预计恰好用完进货款共3600元,设购进篮球x个,足球y个,三种球的进价和售价如下表:
类别 | 篮球 | 足球 | 排球 |
进价(单位:元/个) | 50 | 30 | 20 |
预售价(单位:元/个) | 70 | 45 | 25 |
求y与x之间满足的函数关系式;
(3)该商店综合考虑各种因素,预计每种球销售超过60个后,这种球就会产生滞销.
①假设所购进篮球、足球、排球能全部售出,求出预估利润P(元)与x(个)之间满足的函数关系式;
②求出预估利润的最大值,并写出此时购进三种球各多少个.