【题目】如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求A、B的坐标;
(2)求抛物线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
【题目】如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;
(2)若AD=6,AE=6,求△DBE外接圆的半径及CE的长.
【题目】如图,在△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别是D、E、F.
(1)连接OA、OB,则∠AOB= .
(2)若BD=6,AD=4,求⊙O的半径r.
【题目】为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
【题目】如图,在△ABD中,AD=BD,将△ABD绕点A逆时针旋转得到△ACE,使点C落在直线BD上.
(1)求证:AE∥BC;
(2)连接DE,判断四边形ABDE的形状,并说明理由.
【题目】如图,二次函数y=ax2+bx+c(b≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3 ②a+b+c<0 ③ac>0 ④当y>0时,﹣1<x<3,其中正确的结论是( )
A.②④B.①③C.①④D.①②④
【题目】如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为( )
A.25°B.40°C.35°D.30°
【题目】如图,在直角坐标系中,矩形的顶点与原点重合,、分别在坐标轴上,,,直线交,分别于点,,反比例函数的图象经过点,.
(1)求反比例函数的解析式;
(2)直接写出当时,的取值范围;
(3)若点在轴上,且的面积与四边形的面积相等,求点的坐标.
【题目】如图(1),为坐标原点,点在轴的正半轴上,四边形是平行四边形,,,反比例函数在第一象限内的图象经过点,与交于点.
(1)求点的坐标和反比例函数解析式;
(2)若,求点的坐标;
(3)在(2)中的条件下,如图(2),点为直线上的一个动点,点为双曲线上的一个动点,是否在这样的点、点,使以、、、为顶点的四边形是平行四边形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.
【题目】如图(1),已知点在止方形的对角线上,,垂足为点,,垂足为.
(1)求证:四边形是正方形并直接写出的值.
(2)将正方形绕点顺时针方向旋转,如图(2)所小,试探究与之间的数量关系,并说明理由.
(3)正方形在旋转过程中,当,,,三点在一条直线上时,如图(3)所示,延长交于点.若,,求的长.