题目内容
【题目】如图,在△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别是D、E、F.
(1)连接OA、OB,则∠AOB= .
(2)若BD=6,AD=4,求⊙O的半径r.
【答案】(1)135°;(2)r=2
【解析】
(1)根据三角形的内心的性质即可解答.
(2)连接,根据圆的切线的性质和角平分线的性质,加之为直角证明四边形为正方形,设,用表示出的三边,运用勾股定理列方程解答即可.
解:(1)
∵⊙O是△ABC的内切圆,
∴O为△ACB的内心,
∴∠OBA=∠ABC,∠OAB=∠CAB,
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∴∠OBA+∠OAB=×90°=45°,
∴∠AOB=180°﹣∠45°=135°,
故答案为:135°;
(2)连接EO,FO,
∵⊙O是△ABC的内切圆,切点分别为D,E,F,
∴OE⊥BC,OF⊥AC,BD=BE,AD=AF,EC=CF,
又∵∠C=90°,
∴四边形ECFO是矩形,
又∵EO=FO,
∴矩形OECF是正方形,
设EO=x,
则EC=CF=x,
在Rt△ABC中
BC2+AC2=AB2
故(x+6)2+(x+4)2=102,
解得:x=2,
即⊙O的半径r=2.
练习册系列答案
相关题目
【题目】某企业生产的一种果汁饮料由A、B两种水果配制而成,其比例与成本如下方表格所示,已知该饮料的成本价为8元/千克,按现价售出后可获利润50%,每个月可出售27500瓶.
每千克饮料所占比例 | 成本(元/千克) | |
A | 20% | m |
B | 80% | m-15 |
(1)求m的值;
(2)由于物价上涨,A水果成本提高了25%,B水果成本提高了20%,在不改变售价的情况下,若要保持每个月的利润不减少,则现在至少需要售出多少瓶饮料?