【题目】在直角坐标平面内,为原点,点的坐标为,点的坐标为,直线轴(如图所示).点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结.
(1)求的值和点的坐标;
(2)设点在轴的正半轴上,若是等腰三角形,求点的坐标;
【题目】如图,在海面上生成了一股强台风,台风中心(记为点M)位于滨海市(记作点A)的南偏西15°,距离为 千米,且位于临海市(记作点B)正西方向千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.
(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由.
(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?
【题目】如图,和的半径为1和3,连接,交于点,,若将绕点按顺时针方向旋转,则与共相切_______次.
【题目】(本题满分8分)
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),与的函数关系如图所示.
根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中与之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立。你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。
【题目】如图所示,有3张不透明的卡片,除正面写有不同的数字外,其他均相同。将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b。
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图像经过二、三、四象限的概率(用树状图或列表法求解)
【题目】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
【题目】在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=
A.35°B.45°C.50°D.55°
【题目】某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
【题目】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁,因为准备工作不足,第一天少拆迁了.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了.求:
该工程队第一天拆迁的面积;
若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.