题目内容
【题目】某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
【答案】解法一:设矩形温室的宽为xm,则长为2xm.根据题意,得
(x﹣2)(2x﹣4)=288.
解这个方程,得x1=﹣10(不合题意,舍去),x2=14.
所以x=14,2x=2×14=28.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.
解法二:设矩形温室的长为xm,则宽为xm.根据题意,得
(x﹣2)(x﹣4)=288.
解这个方程,得x1=﹣20(不合题意,舍去),x2=28.
所以x=28,x=×28=14.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.
【解析】本题有多种解法.设的对象不同所列的一元二次方程不同.一般情况下当两个量之比为a:b时,则设它们分别为ax和bx.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.