题目内容
【题目】在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=
A.35°B.45°C.50°D.55°
【答案】A
【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而求得∠FPC的度数,根据余角的定义即可得到结果.
解:如图,延长PF交AB的延长线于点G.
在中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点.
又∵∠BEP=90°,
∴,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP-∠FEP=∠EPC-∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°-∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,,
∴∠FPC=55°,
∴∠EPF=90°-55°=35°,
故选:A.
练习册系列答案
相关题目