题目内容

【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,E是边BC的中点.AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证AME≌△ECF,所以AE=EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把E是边BC的中点改为E是边BC(B,C)的任意一点,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,EBC的延长线上(C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立。你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。

【答案】(1)正确,证明见解析;(2)正确,证明见解析.

【解析】

解:(1)正确.

证明:在AB上取一点M,使AM=EC,连结ME

∴BM=BE. ∴∠BME=45°. ∴∠AME=135°.

∵CF是外角平分线,

∴∠DCF = 45°. ∴∠ECF = 135°.

∴∠AME = ∠ECF .

∵∠AEB +∠BAE=90°∠AEB + ∠CEF = 90°,

∴∠BAE = ∠CEF.

∴△AME ≌ △ECFASA).

∴AE=EF.

2)正确.

证明:

BA的延长线上取一点N

使AN=CE,连接NE.

∴BN=BE.

∴∠N=∠FCE=45°.

四边形ABCD是正方形,

∴AD∥BE . ∴∠DAE=∠BEA .

∴∠NAE=∠CEF . ∴△ANE≌△ECFASA).

∴AE=EF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网