【题目】如图直线yx+3与坐标轴分别交于AB两点抛物线yax2bx-3a经过点AB顶点为C连接CB并延长交x轴于点ED与点B关于抛物线的对称轴MN对称

(1)求抛物线的解析式及顶点C的坐标

(2)求证四边形ABCD是直角梯形

【答案】(1)y=-x2-2x+3,顶点C的坐标为(-1,4);(2)证明见解析.

【解析】

1)解:∵yx3与坐标轴分别交与AB两点,∴A点坐标(-30)、B点坐标(03.

抛物线yax2bx3a经过AB两点,

解得

抛物线解析式为:y=-x22x3.

∵y=-x22x3=-(x124

顶点C的坐标为(-14.

2)证明:∵BD关于MN对称,C(-14),B03),

∴D(-23.∵B03),A(-30),∴OAOB.

∠AOB90°∴∠ABO∠BAO45°.

∵BD关于MN对称,∴BD⊥MN.

∵MN⊥x轴,∴BD∥x.

∴∠DBA∠BAO45°.

∴∠DBO∠DBA∠ABO45°45°90°.

设直线BC的解析式为ykxb

B03),C(-14)代入得,

解得

∴y=-x3.

y0时,-x30x3∴E30.

∴OBOE,又∵∠BOE90°

∴∠OEB∠OBE∠BAO45°.

∴∠ABE180°∠BAE∠BEA90°.

∴∠ABC180°∠ABE90°.

∴∠CBD∠ABC∠ABD45°.

∵CM⊥BD∴∠MCB45°.

∵BD关于MN对称,

∴∠CDM∠CBD45°CD∥AB.

∵ADBC不平行,四边形ABCD是梯形.

∵∠ABC90°四边形ABCD是直角梯形.

型】解答
束】
21

【题目】有两组卡片第一组三张卡片上都写着ABB第二组五张卡片上都写着ABBDE.试用列表法求出从每组卡片中各抽取一张两张都是B的概率

 0  358246  358254  358260  358264  358270  358272  358276  358282  358284  358290  358296  358300  358302  358306  358312  358314  358320  358324  358326  358330  358332  358336  358338  358340  358341  358342  358344  358345  358346  358348  358350  358354  358356  358360  358362  358366  358372  358374  358380  358384  358386  358390  358396  358402  358404  358410  358414  358416  358422  358426  358432  358440  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网