【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
【题目】如图所示,能说明四边形是菱形的有( )
①;②,,;③;④,.
A. ① B. ①③ C. ② D. ③④
【题目】如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.
求证:(1)EF=CD;(2)EF∥CD.
【题目】如图,△ABC中,AB=AC,∠A=36°AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周长等于AB+BC;(4)D是AC中点其中正确的命题序号是_________________
【题目】如图,在ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分线 D.∠BAD=120°
【题目】如图,正方形中,点是上任意一点,以为边作正方形.
①连接,求证:;
②连接,猜想的度数,并证明你的结论;
③设点在线段上运动,,正方形的面积为,正方形的面积为,试求与的函数关系式,并写出的取值范围.
【题目】(1)如图1,将两个全等的三角板如图摆放,其中△ABC和ΔADE的直角顶点重合在点A处,∠ADE=∠ABC=60°,且点D在AC上,点B在AE上,∠C=∠E=30°,AB=AD,AC=AE,BC=DE,BC和DE相交于点F.求证:CF=EF.
(2)如图2,将这两个三角板如图摆放,直角顶点A仍然重合,BC与DE相交于点F,AC与DE交于点M,AE和BC交于点N.猜想CF和EF还相等吗?说明理由.
(3)如图3,在(2)的基础上,若∠DAM=30°.求证:线段DF和AC互相垂直平分.
【题目】阅读下列材料,并完成任务。
筝形的定义:两组邻边分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作为图形的判定方法.也就是说,如图,若四边形ABCD是一个筝形,则AB=AD,BC=CD;若AB=AD,BC=CD,则四边形ABCD是筝形.
如图,四边形ABCD是一个筝形,其中AB=AD,BC=CD.对角线AC,BD相交于点O,过点0作0M⊥AB,ON⊥AD,垂足分别为M,N.求证:四边形AMON是筝形.
【题目】如图,中,和分别平分和的外角,一动点在上运动,过点作的平行线与和的角平分线分别交于点和点.
求证:当点运动到什么位置时,四边形为矩形,说明理由;
在第题的基础上,当满足什么条件时,四边形为正方形,说明理由.
【题目】如图,在矩形中,、分别是、的中点,、分别是、的中点.
求证:四边形是菱形;
若,,求四边形的面积.