题目内容
【题目】如图,△ABC中,AB=AC,∠A=36°AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周长等于AB+BC;(4)D是AC中点其中正确的命题序号是_________________
【答案】(1)(2)(3)
【解析】
首先,由图中的已知条件,找出所需要的各个角的角度.注意此题中的三角形比较特殊,顶角A为36°,两个底角是72°;可利用这些特殊条件进行求解.
解:∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°;
∵DE是AB的垂直平分线,
∴AD=BD,∠A=∠ABD=36°,
∴∠ABD=∠DBC=36°,即BD是∠ABC的角平分线;
因此(1)正确.
在△BDC中,∵∠DBC=36°,∠C=72°;
∴∠BDC=∠C=72°;
∴BD=BC=AD;
因此(2)正确.
∵AD=BD=BC,
∴BD+BC+CD=AD+CD+BC=AC+BC=AB+BC;
因此(3)正确.
不能证明点D是AC中点,因此(4)错误.
故答案为:(1)(2)(3).
练习册系列答案
相关题目