题目内容
【题目】对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
【答案】A
【解析】解:对称轴为:x=﹣=﹣,y=1﹣,
分三种情况:①当对称轴x<0时,即﹣<0,m>0,满足当0<x≤2时的函数值总是非负数;
②当0≤x<2时,0≤﹣<2,﹣4<m≤0,当1﹣>0时,﹣2<m≤2,满足当0<x≤2时的函数值总是非负数;
当1﹣<0时,不能满足当0<x≤2时的函数值总是非负数;
∴当﹣2<m≤0时,当0<x≤2时的函数值总是非负数,
③当对称轴﹣≥2时,即m≤﹣4,如果满足当0<x≤2时的函数值总是非负数,则有x=2时,y≥0,
4+2m+1≥0,
m≥﹣,
此种情况m无解;
故选:A.
练习册系列答案
相关题目