题目内容
【题目】一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.
(1)线段BQ与PQ是否相等?请说明理由;
(2)求A、B间的距离(结果保留根号).
【答案】
(1)
相等,理由如下:由图易知,∠QPB=60°,∠PQB=60°
∴△BPQ是等边三角形,
∴BQ=PQ.
(2)
由(1)得PQ=BQ=900m
在Rt△APQ中,AQ= (m),
又∵∠AQB=180°-(60°+30°)=90°,
∴在Rt△AQB中,
AB= = =300 (m).
答:A、B间的距离是300 m.
【解析】
【考点精析】关于本题考查的关于方向角问题,需要了解指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角才能得出正确答案.
练习册系列答案
相关题目