题目内容

【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.

(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

【答案】
(1)

证明:∵四边形ABCD是正方形,

∴∠ABC=∠C=90°,AB=BC.

∴在△ABP和△BCQ中,

∴△ABP≌△BCQ,

∴∠BAP=∠CBQ.

∵∠BAP+∠APB=90°,

∴∠CBQ+∠APB=90°,

∴∠BEP=90°,

∴AP⊥BQ;


(2)

解:∵正方形ABCD中,AB=3,BP=2CP,

∴BP=2,

由(1)可得NQ=CQ=BP=2,NB=3.

又∵∠NQB=∠CQB=∠ABQ,

∴MQ=MB.

设MQ=MB=x,则MN=x﹣2.

在直角△MBN中,MB2=BN2+MN2

即x2=32+(x﹣2)2

解得:x= ,即MQ=


(3)

解:∵BP=m,CP=n,

由(1)(2)得MQ=BM,CQ=QN=BP=m,

设AM=y,BN=BC=m+n,

在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,

(y+m+n)2=(m+n)2+(y+n)2

即y2+2(m+n)y+(m+n)2=(m+n)2+y2+2ny+n2

则y= ,AM=


【解析】(1)证明△ABP≌△BCQ,则∠BAP=∠CBQ,从而证明∠CBQ+∠APB=90°,进而得证;(2)设MQ=MB=x,则MN=x﹣2.在直角△MBN中,利用勾股定理即可列方程求解;(3)设AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,利用勾股定理即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网