题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;
(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.
【答案】
(1)
解:设抛物线解析式为y=a(x+1)(x﹣3),
把C(0,3)代入得a1(﹣3)=3,解得a=﹣1,
所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3
(2)
解:设直线BC的解析式为y=kx+m,
把B(3,0),C(0,3)代入得 ,解得 ,
所以直线BC的解析式为y=﹣x+3,
作PM∥y轴交BC于M,如图1,
设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),
∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,
∴S△PCB= 3PM=﹣ x2+ =﹣ (x﹣ )2+ ,
当x= 时,△BCP的面积最大,此时P点坐标为( , )
(3)
解:如图2,
抛物线的对称轴为直线x=1,
当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3),
把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2,
∴Q(4,﹣5);
当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a),
把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8,
∴Q(﹣2,﹣5);
当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a),
把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0,
∴Q(2,3),
综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).
【解析】(1)设交点式y=a(x+1)(x﹣3),然后把C点坐标代入求出a的值即可得到抛物线的解析式;(2)先利用待定系数法求出直线BC的解析式为y=﹣x+3,作PM∥y轴交BC于M,如图1,设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),利用三角形面积公式得到∴S△PCB= 3PM=﹣ x2+ ,然后根据二次函数的性质求解;(3)如图2,分类讨论:当四边形BCDQ为平行四边形,设D(1,a),利用点平移的坐标规律得到Q(4,a﹣3),然后把Q(4,a﹣3)代入y=﹣x2+2x+3中求出a即可得到Q点坐标;当四边形BCQD为平行四边形或四边形BQCD为平行四边形时,利用同样方法可求出对应Q点坐标.
【题目】某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)
教学能力 | 科研能力 | 组织能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?