题目内容
【题目】如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是( )
A.24B.30C.45D.
【答案】A
【解析】
过C作CH⊥AB于H,推出四边形ADCH是矩形,四边形ABCD是直角梯形,求得∠BCH=30°,设BC=x,则CD=12﹣x,得到AH=12﹣x,BH=x,CH=x,根据梯形的面积公式和二次函数的性质即可得到结论.
解:过C作CH⊥AB于H,
∵AB⊥AD,CD⊥AD,
∴∠A=∠ADC=∠AHC=90°,CD∥AB,
∴四边形ADCH是矩形,四边形ABCD是直角梯形,
∴∠DCH=90°,CD=AH,
∵∠BCD=120°,
∴∠BCH=30°,
设BC=x,则CD=12﹣x,
∴AH=12﹣x,BH=x,CH=x,
∴四边形ABCD的面积=(CD+AB)CH=(12﹣x+12﹣x+x)×x,
∴四边形ABCD的面积=﹣(x﹣8)2+24,
∴当x=8时,四边形ABCD的面积有最大值24,
即四边形ABCD的面积可能是24,
故选:A.
【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践及创客空间,致力于从小培养学生的创新精神和创造能力,某校开设了“3D”打印,数学编程,智能机器人,陶艺制作,这四门创客课程,为了了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成如下的统计图表:
创客课程 | 频数 | 频率 |
“3D”打印 | 36 | 0.45 |
数学编程 | 0.25 | |
智能机器人 | 16 | b |
陶艺制作 | 8 | |
合计 | a | 1 |
根据图表中提供的信息回答下列问题:
(1)统计表中的a=________,b=________;
(2)“陶艺制作”对应扇形的圆心角度数为________;
(3)若该校有学生2000人,请估算全校喜爱“智能机器人”的人数有多少?