题目内容
【题目】如图,在平面直角坐标系中,直线 分别与x轴、y轴交于点B、C,且与直线 交于点A.
(1)分别求出点A、B、C的坐标;
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;
(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【答案】
(1)解:直线 ,
当x=0时,y=6,
当y=0时,x=12,
∴B(12,0),C(0,6),
解方程组: 得: ,
∴A(6,3),
答:A(6,3),B(12,0),C(0,6)
(2)解:解:设D(x, x),
∵△COD的面积为12,
∴ ×6×x=12,
解得:x=4,
∴D(4,2),
设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:
,
解得: ,
∴y=﹣x+6,
答:直线CD的函数表达式是y=﹣x+6
(3)解:答:存在点Q,使以O、C、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(﹣3,3)或
【解析】(1)把x=0,y=0分别代入直线L1 , 即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x, x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.
【考点精析】利用解二元一次方程组和确定一次函数的表达式对题目进行判断即可得到答案,需要熟知二元一次方程组:①代入消元法;②加减消元法;确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.