题目内容
【题目】如图,已知△ABC的三个顶点A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC关于直线AC的对称图形△AB1C, 若点B1恰好落在y轴上,则的值为( )
A.B.C.D.
【答案】D
【解析】
由B(b,0)、C(0,2a),可得BC= ,△ABC关于直线AC的对称图形△AB1C,且点B1恰好落在y轴上,即可确定B1的坐标,进而确定BB1的中点D的坐标;△ABC关于直线AC的对称图形△AB1C,则段BB1的中点D在直线AC上;再由A(a,0)、C(0,2a)确定直线AC的解析式,最后将D点坐标代入求解即可.
解:∵B(b,0)、C(0,2a)
∴BC=
∵△ABC关于直线AC的对称图形△AB1C,且点B1恰好落在y轴上
∴B1的坐标为(0, -2a)
∴BB1的中点D的坐标为(,)
∵A(a,0)、C(0,2a)
∴直线AC的解析式为:y=-2x+2a
∵△ABC关于直线AC的对称图形△AB1C,
∴段BB1的中点D在直线AC上
∴,即
∴且>0
解得:=
故答案为D.
【题目】某数学兴趣小组对函数y=x+的图象和性质进行了探究,探究过程如下,请补充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | m | ﹣2 | - | - | 2 |
| … |
(1)自变量x的取值范围是 ,m= .
(2)根据(1)中表内的数据,在如图所示的平面直角坐标系中描点,画出函数图象的一部分,请你画出该函数图象的另一部分.
(3)请你根据函数图象,写出两条该函数的性质;
(4)进一步探究该函数的图象发现:
①方程x+=3有 个实数根;
②若关于x的方程x+=t有2个实数根,则t的取值范围是 .
【题目】由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
【题目】某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表和扇形统计图.
等第 | 成绩(得分) | 频数(人数) | 频率 |
A | 10分 | 7 | 0.14 |
9分 | x | m | |
B | 8分 | 15 | 0.30 |
7分 | 8 | 0.16 | |
C | 6分 | 4 | 0.08 |
5分 | y | n | |
D | 5分以下 | 3 | 0.06 |
合计 | 50 | 1.00 |
(1)试直接写出
(2)求表示得分为C等的扇形的圆心角的度数;
(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A等和B等的人数共有多少人?
【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨) | B(吨) | 合计(吨) | |
C |
|
| 240 |
D |
| x | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.