题目内容

【题目】问题原型:如图,在等腰直角三角形ABC中,ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点DBCDBC边上的高DE 易证ABC≌△BDE,从而得到BCD的面积为

初步探究:如图,在Rt△ABC中,∠ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.

简单应用:如图,在等腰三角形ABC中,AB=ACBC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

【答案】见解析

【解析】试题分析:(1)初步探究:如图②,过点DBC的垂线,BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a,进而由三角形的面积公式得出结论,

(2)简单运用:如图③,过点AAFBCF,过点DDEBC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.

试题解析:(1)BCD的面积为,

理由:如图②,过点DBC的垂线,BC的延长线交于点E,

∴∠BED=ACB=90°,

∵线段AB绕点B顺时针旋转90°得到线段BE,

AB=BD,ABD=90°,

∴∠ABC+DBE=90°,

∵∠A+ABC=90°,

∴∠A=DBE,

在△ABC和△BDE,

,

∴△ABC≌△BDEAAS,

BC=DE=a,

SBCD=

SBCD=,

(2)简单应用:如图③,过点AAFBCF,过点DDEBC的延长线于点E,

∴∠AFB=E=90°,BF= ,

∴∠FAB+ABF=90°,

∵∠ABD=90°,

∴∠ABF+DBE=90°,

∴∠FAB=EBD,

∵线段BD是由线段AB旋转得到的,

AB=BD,

在△AFB和△BED,

,

∴△AFB≌△BEDAAS,

BF=DE= ,

SBCD= ,

SBCD=,

∴△BCD的面积为,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网