题目内容
【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE, 易证△ABC≌△BDE,从而得到△BCD的面积为.
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)
【答案】见解析
【解析】试题分析:(1)初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a,进而由三角形的面积公式得出结论,
(2)简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.
试题解析:(1)△BCD的面积为,
理由:如图②,过点D作BC的垂线,与BC的延长线交于点E,
∴∠BED=∠ACB=90°,
∵线段AB绕点B顺时针旋转90°得到线段BE,
∴AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS),
∴BC=DE=a,
∵S△BCD=
∴S△BCD=,
(2)简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,
∴∠AFB=∠E=90°,BF= ,
∴∠FAB+∠ABF=90°,
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD,
∵线段BD是由线段AB旋转得到的,
∴AB=BD,
在△AFB和△BED中,
,
∴△AFB≌△BED(AAS),
∴BF=DE= ,
∵S△BCD= ,
∴S△BCD=,
∴△BCD的面积为,
【题目】声音在空气中的传播速度v(m/s)与温度T(℃)的关系如下表:
温度/℃ | 0 | 5 | 10 | 15 | 20 |
速度v/(m/s) | 331 | 334 | 337 | 340 | 343 |
(1)写出速度v与温度T之间的关系式;
(2)当T=30℃时,求声音的传播速度;
(3)当声音的传播速度为346m/s时,温度是多少?