题目内容
【题目】(8分)某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(l)某校2015届九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
【答案】解:(1)设搭配A种造型个,则搭配B种造型个,得
解得:
∵为正整数,
∴可以取29,30,31,32,33.
∴共有五种方案:
方案一:A:29,B:21;
方案二:A:30,B:20;
方案三:A:31,B:19;
方案四:A:32,B:18;
方案五:A:33,B:17;
(2)设费用为y,则
∵,∴y随x的增大而减小,
∴当时,即方案五的成本最低,最低成本=。
【解析】试题(1)根据题目中的两个不等关系“A种造型需甲种花卉的数量+B种造型需甲种花卉的数量≤349,A种造型需乙种花卉的数量+B种造型需乙种花卉的数量≤295”,即可列出一元一次不等式组,直接解不等式组,然后取整数解即可;(2)有两种方法,根据题意可得,B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,所以选择B造型最少的方案,计算出这种方案的成本即可;根据(1)中得出的方案,分别计算出每种方案的成本,选择成本最低的方案即可.
试题解析: 解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,
依题意得,
解这个不等式组得:31≤x≤33,
∵x是整数,
∴x可取31,32,33,
∴可设计三种搭配方案 ①A种园艺造型31个,B种园艺造型19个;
②A种园艺造型32个,B种园艺造型18个;
③A种园艺造型33个,B种园艺造型17个.
(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,
故应选择方案③,成本最低,最低成本为33×200+17×360=12720(元),
方法二:方案①需成本31×200+19×360=13040(元);
方案②需成本32×200+18×360=12880(元);
方案③需成本33×200+17×360=12720(元),
∴应选择方案③,成本最低,最低成本为12720元.