题目内容

【题目】如图,正方形ABCD的边长为1cm,AC是对角线,AE平分∠BAC,EF⊥AC于F.
(1)求证:BE=EF.
(2)求tan∠EAF的值.

【答案】
(1)证明:∵在正方形ABCD中,EF⊥AC,AB⊥BC,

∴∠AFE=∠ABE=90°;

∵AE平分∠BAC,

∴∠BAE=∠FAE; 

又∵AE=AE,

∴Rt△BAE≌Rt△FAE,

故AB=AF,BE=FE


(2)解:∵正方形ABCD,

∴在Rt△CEF中,∠ECF=45°,

故FE=CF,

∴BE=CF,

∵正方形ABCD的边长为1 cm,对角线AC= cm,

由(1)可得,BE=EF=CF=AC﹣AF=AC﹣AB= ﹣1(cm),


【解析】(1)根据角平分线上的点到角两边的距离相等,可得BE=EF;(2)根据勾股定理,计算正方形的对角线的长,减去AF的长求得CF的长,最后计算tan∠EAF的值.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网