题目内容
【题目】函数y=ax2+bx+a+b(a≠0)的图象可能是( )
A.
B.
C.
D.
【答案】C
【解析】解:A:由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误; B:由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,1)在y轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;
C:由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1,故此选项正确;
D:由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,即a+b=0与a+b>0矛盾,故此选项错误.
故选C.
【考点精析】认真审题,首先需要了解二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点).
练习册系列答案
相关题目