题目内容
【题目】【背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1,d2,d3,且d1=d3=1,d2=2.我们把四个顶点分别在l,m,n,k这四条平行线上的四边形称为“格线四边形” .
【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.
【探究2】(2)如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l,k于点G、点M.求证:EC=DF.
【拓展】(3)如图3,l∥k,等边△ABC的顶点A,B分别落在直线l,k上,AB⊥k于点B,且∠ACD=90°,直线CD分别交直线l、k于点G、点M,点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.
【答案】(1);(2)证明见解析;(3)当2<DH<4时,BC∥DE.理由见解析.
【解析】(1)证明△ABE≌△BCF,即可求得AE的长,然后利用勾股定理即可求解;
(2)过B作BE⊥l于点E,交k于点F,易证△AEB∽△BCF,然后分AB是长和AB是宽两种情况进行讨论求得;
(3)连接AC,证明直角△AEC≌直角△AFD即可证得;
(4)首先证明AM⊥BC,然后证明Rt△ABE≌Rt△ACD,得到∠BAE=∠CAD,则AM⊥ED,即可证得BC∥DE.
(1)解:∵l∥k,BE⊥l,
∴∠BFC=∠BEA=90°,
∴∠ABE+∠BAE=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∴∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,∠BEA=∠CFB,∠BAE=∠CBF,AB=BC
,∴△ABE≌△BCF(AAS),
∴AE=BF,
∵d1=d3=1,d2=2,
∴BE=3,AE=1,
在直角△ABE中,AB===,
即正方形的边长是;
(2)证明:连接AC,如图2所示:
∵四边形ABCD是菱形,且∠ADC=60°,
∴AC=AD,
∵△AEF是等边三角形,
∴AE=AF,
∵AE⊥k,∠AFD=90°,
∴∠AEC=∠AFD=90°,
在Rt△AEC和Rt△AFD中,AC=AD,AE=AF,
,
∴Rt△AEC≌Rt△AFD(HL),
∴EC=DF;
(3)解:当2<DH<4时,BC∥DE.理由如下:
如图3所示,当2<DH<4时,点D在线段CM上,连接AM,
则∠ABM=∠ACM=90°,AB=AC,AM=AM,
在Rt△ABM和Rt△ACM中,AM=AM,AB=AC,
,
∴Rt△ABM≌Rt△ACM(HL),
∴∠BAM=∠CAM,
∴AM⊥BC,
在Rt△ABE和Rt△ACD中,AE=AD,AB=AC,
,
∴Rt△ABE≌Rt△ACD(HL),
∴∠BAE=∠CAD,
∴∠EAM=∠DAM,
∴AM⊥ED,
∴BC∥DE.
“点睛”本题考查了全等三角形的判定与性质以及相似三角形的判定与性质,正确构造相似的三角形是关键,解题时根据题意正确作出辅助线.