题目内容
【题目】如图,P是等边三角形ABC内一点,连接PA、PC,PA=PC,∠APC=90°,把线段AP绕点A逆时针旋转120°,得到线段AQ(点P与点Q为对应点),连接BQ交AP于点E.点D为BQ的中点,连接AD、PD,若S△DAP=2,则AB=__.
【答案】4
【解析】
延长QA到M,使得AM=AQ,连接BM,PM.首先证明△PAM是等边三角形,证明△MAB≌△PAC(SAS),推出∠AMB=∠APC=90°,由AQ=AM,BD=DQ,推出AD∥BM,BM=2AD,推出AD=PA,再利用三角形的面积公式构建方方程求出PA即可解决问题.
延长QA到M,使得AM=AQ,连接BM,PM.
∵△ABC是等边三角形,
∴∠BAC=60°,
∵PA=PC,∠APC=90°,
∴∠PAC=∠PCA=45°,
∵∠PAQ=120°,
∴∠PAM=180°﹣120°=60°,
∵AM=AQ=AP,
∴△APM是等边三角形,
∴∠MAP=∠BAC=60°,
∴∠MAB=∠PAC,
∵AM=AP,AB=AC,
∴△MAB≌△PAC(SAS),
∴BM=PC,∠AMB=∠APC=90°,
∵AQ=AM,BD=DQ,
∴AD∥BM,BM=2AD,
∴AD=PA,
∴∠QAD=∠QMB=90°,
∴∠PAD=∠MAD﹣∠MAP=90°﹣60°=30°,
∵S△PAD=2,
∴PAADsin30°=2,
∴PAPA=2,
∴PA=4,
∴AB=AC=PA=4,
故答案为4.
练习册系列答案
相关题目