题目内容
【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
【答案】(1);(2),AD=6米,AB=32米.
【解析】
试题(1)由34米的墙,及2米宽的小门,得到平行与墙的边,以及垂直于墙的两条边之和,由AD=x,AB=y,所用铁栅栏的长为40米,根据求出的之和表示出y与x的关系式;
(2)由(1)表示出的y与x的关系式,列出S与x的函数关系式,根据矩形场地的面积为192平方米,求出AD与AB的长即可.
试题解析:解:(1)∵y+2x-2×2=40,
∴y=-2x+44,
∴5≤x<;
(2)∵y=-2x+44,
∴S=xy=x(-2x+44)=-2x2+44x;
∵矩形场地的面积为192平方米,
∴-2x2+44x=192,
∴x=6或x=16(不合题意),
∴AB=y=-2x+44=-2×6+44=32.
答:AD=6米,AB=32米才能使矩形场地的面积为192平方米.
【题目】《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格,某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示。
各等级学生平均分统计表
等级 | 优秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等级学生人数分布扇形统计图
(1)扇形统计图中“不及格”所占的百分比是 ;
(2)计算所抽取的学生的测试成绩的平均分;
(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级。
【题目】二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3