题目内容

20、如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?
分析:要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,ABCD又是四边形,内角和为360°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠EBC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.
解答:解:平行.
∵∠A=∠C=90°,四边形ABCD的内角和为360°,
∴∠ADC+∠ABC=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠FDC+∠EBC=90°.
又∵∠C=90°,
∴∠BEC+∠EBC=90°,
∴∠FDC=∠BEC,
∴BE∥DF.
点评:本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网