题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201308/30/dd56825a.png)
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
分析:(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)分两种情况讨论即可求解.
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)分两种情况讨论即可求解.
解答:(1)证明:∵直角△ABC中,∠C=90°-∠A=30°.
∴AB=
AC=
×60=30cm.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=
CD=2t,
∴DF=AE;
解:(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60-4t=2t,
解得:t=10,
即当t=10时,AEFD是菱形;
(3)当∠EDF=90°时,DE∥BC.
∴t=
时,∠EDF=90°.
当∠DEF=90°时,DE⊥EF,
∵四边形AEFD是平行四边形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=
AE,
AD=AC-CD=60-4t,AE=DF=
CD=2t,
∴60-4t=t,
解得t=12.
综上所述,当t=
时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).
∴AB=
1 |
2 |
1 |
2 |
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=
1 |
2 |
∴DF=AE;
解:(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60-4t=2t,
解得:t=10,
即当t=10时,AEFD是菱形;
(3)当∠EDF=90°时,DE∥BC.
∴t=
15 |
2 |
当∠DEF=90°时,DE⊥EF,
∵四边形AEFD是平行四边形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=
1 |
2 |
AD=AC-CD=60-4t,AE=DF=
1 |
2 |
∴60-4t=t,
解得t=12.
综上所述,当t=
15 |
2 |
点评:本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目