题目内容
【题目】如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.
【答案】
【解析】
过点B作BE⊥AC于E,设AE=x,则BE=x,AB=2x,CE=,再根据勾股定理可知:AB2-BD2=AD2=AC2-CD2,将各值代入,即可求出x的值,进而求出AB的长.
解:过点B作BE⊥AC于E,则BE=AE,设AE=x,则BE=x,AB=2x,
∵BD=2CD=2,
∴BD=2,CD=1,BC=3.
∴CE==,
由AB2﹣BD2=AD2=AC2﹣CD2,得4x2-4=(x+)2-1,
∴4x2-4=8-2x2+2x,3x2-6=x,9x4-36x2+36=9x2-3x4,
4x4﹣15x2+12=0,
∴x2=,又
∴x=不合题意,
故x=,∴AB==
练习册系列答案
相关题目
【题目】某厂生产一种工具,据市场调查,若按每个工具280元销售时,每月可销售300个,若销售单价每降低1元,每月可多售出2个,据统计,每个工具的固定成本Q(元)与月销售y(个)满足如下关系:
月销量y(个) | 100 | 160 | 240 | 320 |
每个工具的固定成本Q(元) | 96 | 60 | 40 | 30 |
(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?