题目内容
【题目】二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①正确;
②把代入中得,所以②正确;
③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;
④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.
解:①∵抛物线开口向上,∴,
∵抛物线的对称轴在轴右侧,∴,
∵抛物线与轴交于负半轴,
∴,
∴,①错误;
②当时,,∴,
∵,∴,
把代入中得,所以②正确;
③当时,,∴,
∴,
∵,,,
∴,即,所以③正确;
④∵抛物线的对称轴为直线,
∴时,函数的最小值为,
∴,
即,所以④正确.
故选C.
练习册系列答案
相关题目
【题目】下表中给出了变量x与ax2,ax2+bx+c之间的部分对应值(表格中的符号“…”表示该项数据已经丢失)
x | -1 | 0 | 1 |
ax | … | … | 1 |
ax+ bx + c | 7 | 2 | … |
(1)写出这条抛物线的开口方向,顶点D的坐标;并说明它的变化情况;
(2)抛物线的顶点为D,与y轴的交点为A,点M是抛物线对称轴上的一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求点B的坐标:
(3)在(2)的条件下,设线段BD交x轴于点C,试写出∠BAD与∠DCO的数量关系,并说明理由.