题目内容

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.

(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.

【答案】
(1)

解:设抛物线解析式为y=a(x﹣2)2+9,

∵抛物线与y轴交于点A(0,5),

∴4a+9=5,

∴a=﹣1,

y=﹣(x﹣2)2+9=﹣x2+4x+5


(2)

解:当y=0时,﹣x2+4x+5=0,

∴x1=﹣1,x2=5,

∴E(﹣1,0),B(5,0),

设直线AB的解析式为y=mx+n,

∵A(0,5),B(5,0),

∴m=﹣1,n=5,

∴直线AB的解析式为y=﹣x+5;

设P(x,﹣x2+4x+5),

∴D(x,﹣x+5),

∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,

∵AC=4,

∴S四边形APCD= ×AC×PD=2(﹣x2+5x)=﹣2x2+10x,

∴当x=﹣ = 时,

∴S四边形APCD最大=


(3)

解:如图,

过M作MH垂直于对称轴,垂足为H,

∵MN∥AE,MN=AE,

∴△HMN≌△AOE,

∴HM=OE=1,

∴M点的横坐标为x=3或x=1,

当x=1时,M点纵坐标为8,

当x=3时,M点纵坐标为8,

∴M点的坐标为M1(1,8)或M2(3,8),

∵A(0,5),E(﹣1,0),

∴直线AE解析式为y=5x+5,

∵MN∥AE,

∴MN的解析式为y=5x+b,

∵点N在抛物线对称轴x=2上,

∴N(2,10+b),

∵AE2=OA2+0E2=26

∵MN=AE

∴MN2=AE2

∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2

∵M点的坐标为M1(1,8)或M2(3,8),

∴点M1,M2关于抛物线对称轴x=2对称,

∵点N在抛物线对称轴上,

∴M1N=M2N,

∴1+(b+2)2=26,

∴b=3,或b=﹣7,

∴10+b=13或10+b=3

∴当M点的坐标为(1,8)时,N点坐标为(2,13),

当M点的坐标为(3,8)时,N点坐标为(2,3)


【解析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值的确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.
【考点精析】掌握二次函数的最值是解答本题的根本,需要知道如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网