题目内容

【题目】如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:

(1)∠BOD=∠C;

(2)四边形OBCD是菱形.

【答案】证明见解析

【解析】

(1)延长AOE,利用等边对等角和角之间关系解答即可;

(2)连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.

(1)延长OA到E,如图所示:

∵OA=OB,

∴∠ABO=∠BAO,

∠BOE=∠ABO+∠BAO,

∴∠BOE=2∠BAO,

同理∠DOE=2∠DAO,

∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)

∠BOD=2∠BAD,

∠C=2∠BAD,

∴∠BOD=∠C;

(2)连接OC,

∵OB=OD,CB=CD,OC=OC,

∴△OBC≌△ODC,

∴∠BOC=∠DOC,∠BCO=∠DCO,

∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,

∴∠BOC=∠BOD,∠BCO=∠BCD,

∠BOD=∠BCD,

∴∠BOC=∠BCO,

∴BO=BC,

又OB=OD,BC=CD,

∴OB=BC=CD=DO,

四边形OBCD是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网