题目内容
【题目】如图,中,,于,,为边上一点.
(1)当时,直接写出 , .
(2)如图1,当,时,连并延长交延长线于,求证:.
(3)如图2,连交于,当且时,求的值.
【答案】(1),;(2)证明见解析;(3).
【解析】
(1)利用相似三角形的判定可得,列出比例式即可求出结论;
(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;
(3)作于,根据相似三角形的判定可得,列出比例式可得,设,,,即可求出x的值,根据平行线分线段成比例定理求出,设,,,然后根据勾股定理求出AC,即可得出结论.
(1)如图1中,当时,.
,,
,
,
,,
.
故答案为:,.
(2)如图中,作交于.
,,
∴tan∠B=,tan∠ACE= tan∠B=
∴BE=2CE,
,,设,则,
,
,
,,
,
,
.
(3)如图2中,作于.
,
,,
,
,
,
,
,
,
,
,设,,,
则有,
解得或(舍弃),
,
,,,
,,
,
,
,
,设,,,
在中,,
,
,
,
.
练习册系列答案
相关题目