题目内容
【题目】光明中学七(1)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想想看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果。
第一组学生学号 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
两个正面成功次数 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 3 | 3 |
第二组学生学号 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
两个正面成功次数 | 1 | 1 | 3 | 2 | 3 | 4 | 2 | 3 | 3 | 3 |
第三组学生学号 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
两个正面成功次数 | 1 | 0 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | 2 |
第四组学生学号 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
两个正面成功次数 | 2 | 2 | 1 | 4 | 2 | 4 | 3 | 2 | 3 | 3 |
(1)学号为113的同学在他10次实验中,成功了几次?成功率是多少?他是他所在小组同学中成功率最高的人吗?
(2)学号为116和136的两位同学在10次实验中成功率一样吗?如果他们两人再做10次实验,成功率依然会一样吗?
(3)怎么计算每一组学生的集体成功率?哪一组成功率最高?
(4)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表,如果把这张表画成相应的图,你会看到什么?
抛掷次数 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
出现两个正面的频数 | ||||||||
出现两个正面的频率 |
【答案】
(1)解:由表格可得出:学号为113的同学在他10次实验中,成功了3次,成功率是: ×100%=30%.
根据该组中116号成功了4次,故他不是他所在小组同学中成功率最高的人
(2)解:根据学号为116和136的两位同学在10次实验中的成功次数相同,故学号为116和136的两位同学在10次实验中的成功率是一样的。
如果他们两人再做10次实验,成功率不一定会一样
(3)解:集体成功率= ×100%。第一组成功率:(1+2+3+3+3+3+3+3+6+3)÷(10×10)×100%=30%;
第二组成功率:(1+1+3+2+3+4+2+3+3+3)÷(10×10)×100%=25%;
第三组成功率:(1+0+3+1+3+3+3+2+2+2)÷(10×10)×100%=20%;
第四组成功率:(2+2+1+4+2+4+3+2+3+3)÷(10×10)×100%=26%;
故第一组成功率最高
(4)解:统计表如下:
抛掷次数 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
出现两个正面的频数 | 12 | 30 | 40 | 55 | 63 | 75 | 86 | 101 |
出现两个正面的频率 | 24% | 30% | 26.7% | 27.5% | 25.2% | 25% | 24.6% | 25.3% |
若绘制成图后,会看到出现两个正面的频率逐渐稳定于25%附近
【解析】(1)利用成功的次数÷实验的次数可得成功的频率;
(2)利用概率的意义进行判断可得答案;
(3)用(1)的方法进行计算即可;
(4)利用频率与概率的关系进行判断,实验次数越多,这个值越接近该事件的概率。
【题目】某风景区对5个旅游景点的游客人数进行了统计,有关数据如下表:
景点 | A | B | C | D | E |
票价(元) | 10 | 10 | 15 | 20 | 25 |
平均日人数(千人) | 1 | 1 | 2 | 3 | 2 |
(1)如果这个星期天你去此风景区游玩,小刚、小明也去了,你在哪个景点遇见他们两个的机会较大?为什么?
(2)如果到了这个风景区,你不想把这几个景点全部参观完,但又不知选哪一个,于是你想出一个主意:抓阄,那么,你抓出哪种票价的机会较大有多大?此时你参观哪个景点的机会较大?