题目内容
【题目】某风景区对5个旅游景点的游客人数进行了统计,有关数据如下表:
景点 | A | B | C | D | E |
票价(元) | 10 | 10 | 15 | 20 | 25 |
平均日人数(千人) | 1 | 1 | 2 | 3 | 2 |
(1)如果这个星期天你去此风景区游玩,小刚、小明也去了,你在哪个景点遇见他们两个的机会较大?为什么?
(2)如果到了这个风景区,你不想把这几个景点全部参观完,但又不知选哪一个,于是你想出一个主意:抓阄,那么,你抓出哪种票价的机会较大有多大?此时你参观哪个景点的机会较大?
【答案】
(1)解:在A,B,C,D,E,5个景点遇见他们两个的概率分别为: , , , , ,∵在D点的概率为 = ,最大。
∴在D点遇见他们两个的机会最大
(2)解:∵10元票所占的概率为 大于其它票价所占的概率,∴抓出10元票价的机会较大,即参观A,B两个景点的机会较大
【解析】利用概率公式,分别求出第一个景点的概率,根据概率的大小进行判断。
【题目】“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”区域的次数m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“铅笔”区域的频率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70
B.假如你去转动转盘一次,获得铅笔的概率大约是0.70
C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次
D.转动转盘10次,一定有3次获得文具盒
【题目】光明中学七(1)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想想看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果。
第一组学生学号 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
两个正面成功次数 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 3 | 3 |
第二组学生学号 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
两个正面成功次数 | 1 | 1 | 3 | 2 | 3 | 4 | 2 | 3 | 3 | 3 |
第三组学生学号 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
两个正面成功次数 | 1 | 0 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | 2 |
第四组学生学号 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
两个正面成功次数 | 2 | 2 | 1 | 4 | 2 | 4 | 3 | 2 | 3 | 3 |
(1)学号为113的同学在他10次实验中,成功了几次?成功率是多少?他是他所在小组同学中成功率最高的人吗?
(2)学号为116和136的两位同学在10次实验中成功率一样吗?如果他们两人再做10次实验,成功率依然会一样吗?
(3)怎么计算每一组学生的集体成功率?哪一组成功率最高?
(4)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表,如果把这张表画成相应的图,你会看到什么?
抛掷次数 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
出现两个正面的频数 | ||||||||
出现两个正面的频率 |