题目内容
【题目】已知,如图,AO⊥BC,DO⊥OE.
(1)在下面的横线上填上适当的角:
∠DOE=∠+∠;∠BOE=∠﹣∠;
(2)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少4个).
(3)如果∠COE=35°,求∠AOD的度数.
【答案】
(1)∠DOA;∠AOE;∠BOC;∠COE
(2)解:∠AOB=∠AOC,∠DOE=∠AOB,∠DOE=∠AOC,∠BOD=∠AOE,∠DOA=∠EOC
(3)解:∠AOD=∠COE=35°
【解析】(1)根据图形的构成可求解;(2)根据图形和已知条件可知图中有关角的等量关系有:∠AOB=∠AOC,∠DOE=∠AOB,∠DOE=∠AOC,∠BOD=∠AOE,∠DOA=∠EOC;(3)根据同角的余角相等可求得∠AOD的度数.
【题目】光明中学七(1)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想想看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果。
第一组学生学号 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
两个正面成功次数 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 3 | 3 |
第二组学生学号 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
两个正面成功次数 | 1 | 1 | 3 | 2 | 3 | 4 | 2 | 3 | 3 | 3 |
第三组学生学号 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
两个正面成功次数 | 1 | 0 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | 2 |
第四组学生学号 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
两个正面成功次数 | 2 | 2 | 1 | 4 | 2 | 4 | 3 | 2 | 3 | 3 |
(1)学号为113的同学在他10次实验中,成功了几次?成功率是多少?他是他所在小组同学中成功率最高的人吗?
(2)学号为116和136的两位同学在10次实验中成功率一样吗?如果他们两人再做10次实验,成功率依然会一样吗?
(3)怎么计算每一组学生的集体成功率?哪一组成功率最高?
(4)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表,如果把这张表画成相应的图,你会看到什么?
抛掷次数 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
出现两个正面的频数 | ||||||||
出现两个正面的频率 |
【题目】在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( )
年龄 | 13 | 14 | 15 | 25 | 28 | 30 | 35 | 其他 |
人数 | 30 | 533 | 17 | 12 | 20 | 9 | 2 | 3 |
A. 平均数 B. 众数 C. 方差 D. 标准差