题目内容

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;
(3)在平面直角坐标系中,找出一点A2 , 使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.

【答案】
(1)

解:如图所示;


(2)

解:设直线AB1的解析式为y=kx+b(k≠0),

∵A(﹣1,5),B1(1,0),

,解得

∴直线AB1的解析式为:y=﹣ x+

∴P(0,2.5);


(3)

解:如图所示,A2(﹣6,0).


【解析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.
【考点精析】本题主要考查了确定一次函数的表达式和坐标与图形变化-对称的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y);关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网