题目内容

【题目】填空:如图,已知DGBCBCACEFAB,∠1=∠2,试判断CDAB的位置关系:

解:CDAB

DGBC,BCAC(已知)

∴∠DGB=∠_____=90°(垂直定义)

DGAC,(____________________)

∴∠2=∠_________.(两直线平行,内错角相等)

∵∠1=∠2(已知)

∴∠1=∠________(等量代换)

EF∥______(同位角相等,两直线平行)

∴∠AEF=∠ADC,(________________)

EFAB,

∴∠AEF90°

∴∠ADC90°

即:CDAB.

【答案】ACB;同位角相等,两直线平行;∠ACD;∠ACDCD;两直线平行,同位角相等.

【解析】

根据垂直于同一直线的两条直线平行,证出DG∥AC,再根据DG∥AC,∠1=∠2,证出∠1=∠ACD,所以EF∥CD,因此∠AEF=∠ADC=90°,即CD⊥AB.

解:CD⊥AB

∵DG⊥BC,BC⊥AC(已知)

∴∠DGB=∠_ACB__=90°(垂直定义)

∴DG∥AC,(同位角相等,两直线平行_____)

∴∠2=∠ACD__.(两直线平行,内错角相等)

∵∠1=∠2(已知)

∴∠1=∠ACD_(等量代换)

∴EF∥__CD__(同位角相等,两直线平行)

∴∠AEF=∠ADC,(_两直线平行,同位角相等__)

∵EF⊥AB,

∴∠AEF=90°

∴∠ADC=90°

即:CD⊥AB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网