题目内容

【题目】如图,在△ABC中,AB=AC=4,∠BAC=120°ADBC边上的高,点P从点B以每秒个单位长度的速度向终点C运动,同时点Q从点C以每秒1个单位长度的速度向终点A运动,其中一个点到达终点时,两点同时停止.

(1)BC的长;

(2)设△PDQ的面积为S,点P的运动时间为t秒,求St的函数关系式,并写出自变量的取值范围;

(3)在动点PQ的运动过程中,是否存在PD=PQ,若存在,求出△PDQ的周长,若不存在,请说明理由.

【答案】(1) 4;(2)SPDQ=-t2+t(0t2);SPDQ=t -t2 (2<t4);3)存在PD=PQ,此时△PDQ的周长为3.

【解析】

(1)根据等腰三角形性质三线合一和含30°锐角的直角三角形的性质即可解答;(2)分当点P在线段BD上运动和当点P在线段DC上运动,过点QQMBC于点M,用含时间t的代数式分别表示出PD=BD-BP=2-t或者PD= BP - BD =t- 2,、QM CQ=t的长,根据三角形面积公式即可求解;(3)根据题意可得,当PD=PQ时,PD=PQ

用含t的式子分别表示出RtPMQ的三边,由勾股定理得QM2+MP2=QP2,解得t=3后得到△DPQ是等边三角形,边长为,从而求出周长.

解:(1ABC中,∵AB=AC=4,∠BAC=120°AD BC

∴∠B=C=30°,BD=DC

AD=AB=2,由勾股定理得:BD=DC= 2

BC=2BD=4;

2)过点QQMBC于点M

CQ=t,∠C=30°,BP=t

QM= CQ=t

①当点P在线段BD上运动时,即0t2,如图:

PD=BD-BP=2-t

SPDQ=×PD×QM=×(2-t)×t=-t2+t(0t2);

②当点P在线段DC上运动时,即2<t4,如图:

PD= BP - BD =t- 2,方法同①得:

SPDQ=×PD×QM=×(t -2)×t=t -t2 (2<t4);

3)当点PBD上运动时,∠BDQ>90°,PDPQ,所以若PD=PQ=t -2 ,则PD=PQ如(2)②中图形,此时PD=PQ=t- 2,PC=BC-BP=4-tMC==t MP=MC-PC=t-(4-t)=t-4

RtPMQ中,∵QM2+MP2=QP2

∴(t2+t-42=t -22

化简得:t2-6t+9=0,即(t-32=9,∵t >0

解得t=3,即PD=PQ=t -2=3 -2==PC

又∵∠C=30°,∴∠C=PQC=30°,∠DPQ=C+PQC=60°,即△DPQ是等边三角形,

∴△DPQ的周长=3PD=3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网