题目内容
【题目】如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).
(1)求抛物线的解析式的一般式.
(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.
(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.
【答案】(1)y=x2﹣2x﹣3;(2)(4,5)或();(3)10
【解析】
(1)把C点坐标代入y=a(x+1)(x-3)中求出a的值即可得到抛物线解析式;
(2)分两种情况,当点P在直线BC的下方时,过点B作BE⊥BC交CP的延长线于点E,过点E作EM⊥x轴于点M,由直角三角形的性质可求得ME,BM长,求出点E的坐标,可求出直线CE的解析式,联立直线和抛物线方程可求出点P的坐标;当点P在直线BC的上方时,过点B作BF⊥BC交CP于点F,同理求出点F的坐标和直线CF的解析式,联立直线和抛物线方程可求得点P的坐标;
(3)求出直线y=kx-k+2恒过定点H(1,2),连结BH,当BH⊥直线l时,点B到直线l的距离最大时,求出此时k的值,可求出点E,F的坐标,则△BEF的面积可求出.
解:(1)把C(0,﹣3)代入y=a(x+1)(x﹣3),
得﹣3a=﹣3,解得a=1,
所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;
(2)当点P在直线BC的下方时,如图1,过点B作BE⊥BC交CP的延长线于点E,过点E作EM⊥x轴于点M,
∵y=(x+1)(x﹣3),
∴y=0时,x=﹣1或x=3,
∴A(﹣1,0),B(3,0),
∴,
∵OB=OC=3,
∴∠ABC=45°,,
∵∠ACO=∠PCB,
∴,
∴,
∵∠CBE=90°,
∴∠MBE=45°,
∴BM=ME=1,
∴E(4,﹣1),
设直线CE的解析式为y=kx+b,
∴ ,
解得: ,
∴直线CE的解析式为 ,
∴ ,
解得, ,
把代入得,
∴ ,
当点P在直线BC的上方时,过点B作BF⊥BC交CP于点F,如图2,
同理求出,FN=BN=1,
∴F(2,1),
求出直线CF的解析式为y=2x﹣3,
∴ ,
解得:x1=0,x2=4,
∴P(4,5).
综合以上可得点P的坐标为(4,5)或();
(3)∵直线l:y=kx﹣k+2,
∴y﹣2=k(x﹣1),
∴x﹣1=0,y﹣2=0,
∴直线y=kx﹣k+2恒过定点H(1,2),如图3,连结BH,当BH⊥直线l时,点B到直线l的距离最大时,
求出直线BH的解析式为y=﹣x+3,
∴k=1,
∴直线l的解析式为y=x+1,
∴ ,
解得: , ,
∴E(﹣1,0),F(4,5),
∴ .
【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分)分数段 | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
频数分布直方图
根据所给的信息,回答下列问题:
(1)m=________;n=________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在________分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?