题目内容

如图,等边三角形ABC中,AB=4,点P是AB上的一个动点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,设BP=x,AQ=y.
(1)写出y与x之间的函数关系式及自变量x的取值范围;
(2)当BP的长等于多少时,点P与点Q重合;
(3)用x的代数式表示PQ的长(不必写出解题过程).
(1)PE⊥BC,EF⊥AC,FQ⊥AB,
∠A=∠B=∠C=60°,设BP=x,
∴BE=
x
2
,EC=4-
x
2
,CF=2-
x
4

AF=4-2+
x
4
=2+
x
4

∵△BEP△AQF,
AF
BP
=
AQ
BE

∴AQ=1+
x
8

∴y=1+
x
8
(0<x≤4);

(2)当x+y=4,x+1+
x
8
=4,
9
8
x=3,
∴x=
8
3

故BP为
8
3
时,P与Q重合;

(3)PQ=3-
9
8
x
(0<x≤
8
3
)

PQ=
9
8
x-3
(
8
3
<x≤4)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网