题目内容
直线与轴交于点C(4,0),与轴交于点B,并与双曲线交于点。
(1)求直线与双曲线的解析式。
(2)连接OA,求的正弦值。
(3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
(1)求直线与双曲线的解析式。
(2)连接OA,求的正弦值。
(3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
(1) y=x-4;;(2) ;(3) (6,0)或(20,0).
试题分析:(1)把点C的坐标代入y=x+b,求出b的值,得出直线的解析式;把点A(-1,n)代入y=x-4得到n的值,求出A点的坐标,再把将A点代入(x<0)中,求出m的值,从而得出双曲线的解析式;
(2)先过点O作OM⊥AC于点M,根据B点经过y轴,求出B点的坐标,根据勾股定理求出AO的值,根据OC=OB=4,得出△OCB是等腰三角形,求出∠OBC=∠OCB的度数,再在△OMB中,根据正弦定理求出OM的值,从而得出∠OAB的正弦值.
(3)先过点A作AN⊥y轴,垂足为点N,根据AN=1,BN=1,求出AB的值,根据OB=OC=4,求出BC的值,再根据∠OBC=∠OCB=45°,得出∠OBA=∠BCD,从而得出△OBA∽△BCD或△OBA∽△DCB,最后根据,再代入求出CD的长,即可得出答案.
试题解析:(1)∵直线y=x+b与x轴交于点C(4,0),
∴把点C(4,0)代入y=x+b得:b=-4,
∴直线的解析式是:y=x-4;
∵直线也过A点,
∴把A点代入y=x-4得到:n="-5"
∴A(-1,-5),
把将A点代入(x<0)得:m=5,
∴双曲线的解析式是:;
(2)过点O作OM⊥AC于点M,
∵B点经过y轴,
∴x=0,
∴0-4=y,
∴y=-4,
∴B(0,-4),
AO=,
∵OC=OB=4,
∴△OCB是等腰三角形,
∴∠OBC=∠OCB=45°,
∴在△OMB中 sin45°=,
∴OM=2,
∴在△AOM中,
sin∠OAB=;
(3)存在;
过点A作AN⊥y轴,垂足为点N,
则AN=1,BN=1,
则AB=,
∵OB=OC=4,
∴BC=,
∠OBC=∠OCB=45°,
∴∠OBA=∠BCD=135°,
∴△OBA∽△BCD或△OBA∽△DCB,
∴,
∴或,
∴CD=2或CD=16,
∴点D的坐标是(6,0)或(20,0).
练习册系列答案
相关题目