题目内容
【题目】已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,
(1)试证明:DE=BF;
(2)连接DF、BE,猜想DF与BE的关系?
【答案】见解析
【解析】(1)求出AF=CE,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF,根据ASA推出△AFB≌△CED即可;
(2)(2)根据平行四边形的判定得出四边形DEBF是平行四边形,再根据平行四边形的性质得出即可.
(1)证明:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠DEC=90°,
∵DC∥AB,
∴∠DCE=∠BAF,
在△AFB和△CED中
∴△AFB≌△CED,
∴DE=BF;
(2)如图所示:
猜想:DF=BE,DF∥BE,
证明:∵DE⊥AC,BF⊥AC,
∴DE∥BF,
∵DE=BF,
∴四边形DEBF是平行四边形,
∴DF=BE,DF∥BE.
练习册系列答案
相关题目