题目内容

【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是(
A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形

【答案】D
【解析】解:∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处, ∴AE′=AE,∠E′AE=90°,
∴△AEE′是等腰直角三角形,故A正确;
∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,
∴∠E′AD=∠BAE,
∵四边形ABCD是正方形,
∴∠DAB=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠E′AD+∠FAD=45°,
∴∠E′AF=∠EAF,
∵AE′=AE,
∴AF垂直平分EE',故B正确;
∵AF⊥E′E,∠ADF=90°,
∴∠FE′E+∠AFD=∠AFD+∠DAF,
∴∠FE′E=∠DAF,
∴△E′EC∽△AFD,故C正确;
∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,
∴△AE′F不一定是等腰三角形,故D错误;
故选D.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网